Axisymmetric Magnetic Mirror Fusion-Fission Hybrid
نویسندگان
چکیده
Early application of the simple axisymmetric mirror, requiring intermediate performance between a neutron source for materials testing Q=Pfusion/Pinput ~0.05 and pure fusion Q>10, are the hybrid applications. The Axisymmetric Mirror has attractive features as a driver for a fusion-fission hybrid system: geometrical simplicity, as well as the typical mirror features of inherently steady-state operation, and natural divertors in the form of end tanks. This level of physics performance has the virtue of being low risk with only modest R&D needed; and its simplicity promises economy advantages. Operation at Q~1 allows for relatively low electron temperatures, in the range of 3 keV, for the DT injection energy ~ 80 keV from existing positive ion neutral beams designed for steady state. A simple mirror with the plasma diameter of 1 m and mirror-to-mirror length of 40 m is discussed. Simple circular steady state superconducting coils are based on 15 T technology development of the ITER central solenoid. Three groups of physics issues are presented: axial heat loss, MHD stability, and microstability of sloshing ions. Burning fission reactor wastes by fissioning transuranics in the hybrid will multiply fusion’s neutron energy by a factor of ~10 or more and diminish the Q needed to overcome the cost of recirculating power for good economics to less than 2 and for minor actinides with multiplication over 50 to Q~0.2. Hybrids that obtain revenues from sale of both electricity and production of fissile fuel with fissioning blankets might need Q<2 while suppressing fissioning might be the most economical application of fusion but will require Q>4.
منابع مشابه
Progress in Mirror-Based Fusion Neutron Source Development
The Budker Institute of Nuclear Physics in worldwide collaboration has developed a project of a 14 MeV neutron source for fusion material studies and other applications. The projected neutron source of the plasma type is based on the gas dynamic trap (GDT), which is a special magnetic mirror system for plasma confinement. Essential progress in plasma parameters has been achieved in recent exper...
متن کاملThermonuclear Operation Space Lift
The “Project Orion” small fission bomb propulsion concept proposed the one-stage launching of large payloads into low earth orbit, but it was abandoned because of the radioactive fallout into the earth atmosphere. The idea is here revived by the replacement of the small fission bombs with pure deuterium-tritium fusion bombs, and the pusher plate of the Project Orion with a large magnetic mirror...
متن کاملThe Fusion-Fission Hybrid Reactor for Energy Production: A Practical Path to Fusion Application
The fusion-fission hybrid system has the potential attractiveness of good safety performances and plenty of fuel compared to the fission reactor system and also easing the requirement of fusion plasma technology. It is a practical path to the early fusion application for energy production. In this paper, a fusion-driven subcritical reactor for energy multiplier, named FDS-EM, is proposed. It ca...
متن کاملFission and fusion scenarios for magnetic microswimmer clusters
Fission and fusion processes of particle clusters occur in many areas of physics and chemistry from subnuclear to astronomic length scales. Here we study fission and fusion of magnetic microswimmer clusters as governed by their hydrodynamic and dipolar interactions. Rich scenarios are found that depend crucially on whether the swimmer is a pusher or a puller. In particular a linear magnetic cha...
متن کامل